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Abstract

We present an algorithm for the well-known hidden-surface elimination
problem for rectangles, which is also known as the window rendering problem.
The time complexity of our algorithm is sensitive to the size of the output.
Specifically, it runs in time that is O(n!® + k), where k is the size of the
output (which can be as large as ©(n?)). For values of k in the range between

n1/logn and n?, our algorithm is asymptotically faster than previous ones.

1 Imtro ductivon

The hidden-surface elimination problem is well known in computer graphics and com-
putational geometry [6,12,13,15,16,19,20,21,22]: one is given a set of simple, non-
intersecting planar polygons in 3-dimensional space, and 2 projection plane x, and wishes
to determine which portions of the polygons are visible when viewed from infinity along
a direction normal to =, assuming all the polygons are of:aque. An important special
case of this problem occurs when the polygons are all isothetic rectangles, i.e., the rect-
angles are all parallel to the zy-plane and have sides that are paralle] to either the z-

or y-axis. This version of the hidden-surface elimination problem is also known 2s the

~ window rendering problem [4], since it is the problem that must be solved to render the

windows that might need to be displayed on the screen of a work-station. (See Figure 1.)

Another situation where one often wishes to render such a collection of rectangles is in
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Figure 1: (a) isothetic rectangles; (b) their visible portion.

drafting software, where any time 2 rectangle R, is created, by the draftsman, before
rectangle R is created, then R; is “behind® Rj, unless the draftsman explicitly changes
this ordering (e.g., by executing a “move to front” commmand on R, or, equivalently, a
“send to back” command on R»).

Using the terminology of [22], we are interested in the object space version of this prob-
lem. That is, we want a method that produces a device-independent, mathematically-
based representation of the visible surfaces. One reason for our inters.t in an object
spﬁce solution is that such a solution is not dependent on a certain method for rendering
polygons nor on the number of pixels on a display screen (which seems to grow with
each passing year). In addition, an object space solution gives us a representation that
is easily scaled and rotated.

We briefly review some of the efficient algorithms for the window rendering problem.
Since this problem is a special case of hidden-surface elimination (13}, any algorithm
for the general case can also be used for this problem. In [13] McKenna shows how
to solve the general hidden-surface elimination problem in O(n?®) time, generalizing an
algorithm by Dévai [6] for the easier hidden-line elimination problem that also runs in
O(n®) time. (In the hidden-line «:imination problem one is only interested in computing
the portions of the polygonai dcundaries that are visibie.) Both of these algorithms are
worst-case optimal, because thers are problem instances that have ©(n®) output size

(e.g., a collection of rectangles that form a cross hatched pattern, as in Figure 2a.)

Unfortunately, these algorithms always take O(n*®) time, even if the size of the output

is very small (e.g., O(1)). There are algorithms that run faster than O(n?) for certain



Figure 2: (a) Quadratic output size; (b) Small output size with
quadratic 1.

problem instances, however. We review these next.

In [15] Nurmi gives an algorithm for general hidden-line elimination that ruas in
O((n + I)logn) time and O({n + I) logn) space, where I is the number of pairs of line
segments whose projections on x intersect (I is O(n?)). Schmitt [19] is able to achieve
this same time bound for hidden-surface elimination using only O(n + ) space. If I'is
o(n?/logn), then these algorithms clearly run faster than O(n?) time. Their worst-case
performance is, however, 2 suboptimal O(n? Ioé n) time (if I is ©(n?)).

In [12] Giting and Ottmann address the window rendering problem (they are proba-
bly the first to study this important special case of hidden-surface elimination), giving an
algorithm that runs in O(n log® n + I) time. In [9] Goodrich shows how to solve general
hidden-line elimination, and a version of hidden-surface elimination that includes the
window rendering problem as a special case, in O(nlogn + I+ P) time, where P is the
number of pairs of polygons whose projections on 7 intersect (P is O(n?)). Both of these
algorithms are optimal in the worst case and also take advantage of problem instances
that are “simpler” than in the worst case, but they are not truly output-sensitive. In-
deed, there are problem instazces where these two algorithms run in O(n?) time even
though the output size is very small (e.g., a large rectangle that covers up a collection
o.f cross hatched rectangles, 2¢ in Figure 2b.) ,

Recently, Bern [4] and Preparata, Vitter, and Yvinec [18] have shown that one can
sSlve the window rendering problem in O(nlog n log log n+k log n) time and O(n log® n+

klogn) time, respectively, where k is the actual size of the output (recall that k is at



worst 6(n®)). Thus, they have shown that one can solve the window rendering problem
in an output-sensitive manner. Their algorithms are not worst-case optimal, however.
In this paper we give an algorithm for the window rendering problem that is both
worst-case optimal and output-sensitive. Specifically, our algorithm runs in 'O(ﬂ"5 + k)
time, where k is the actual size of the output. Thus, our algorithm is faster than those of
Bern [4] and Preparata, Vitter, and Yvinec [18] for k in the range between 2!/ Jog n and
n2. Our algorithm is based on a problem-division approach to hidden-surface elimina-
tion. In this approach one typically divides the problem—call it A—into two dissimilar
subproblems B and C, solves B and C independently (usually by completely different
techniques), and then “marries” the solutions to B and C to give a solution to A. Apply-
ing this approach to the window rendering problem can lead to an algorithm that runs
in O(n'%logn + klogn) time, although the details are somewhat non-trivial. ThiS, of
course, is worse than previous solutions for all values of k. One of the ways we avoid these
logarithmic multiplicative factors is by modifying the approach so that we divide 4 into
B and C, and solve B, just as before, but then solve C waile marrying the solutions to
B and C. Other ways we avoid these factors are based on fundamental paradigms from
computational geometry, including batched dynamic searching (8], space-sweeping [17],
and fractional cascading [5). I
In the next section we give a high-level description of our algorithm, and in the

subsequent sections (3-3) show how to implement each of its constituent steps. We

conclude in Section 6.

2 An Overview of the Window Rendering Algorithm

Suppose we are given a collection S of n non-intersecting isothetic rectangles in %2, i.e.,
a collection of rectangles parallel to the zy-pla.né such that all edges are parallel to either
the z- or y-axis. The problem is to compute all the portions of each rectangle that are
visible from z = oc with light rays that ace parallel to the z-axis (i.e., the projection
plane is the zy-plane).

More specifically, each rectangle R is given by a triple ((z1,11), (22, v2), 2), where
(z1,y1) is the lower-left corner of R, (z2,ys) is the upper-right corner of R, and z is
the z-coordinate of the plane to which R belongs. For the remainder of this paper we

assume that the relationships “to the left of” and “to the right of” are with respect



to z-coordinates, that the relationships “above” and “below” are with respect to y-
coordinates, and that the relationships “in front of” and “behind” are with respect to
z-coordinates.

There are many ways that one can specify what constitutes a solution to the hidden-
surface elimination problem [12,13,16,20,21,22]. Let G be the planar subdivision deter-
mined by a solution to the hidden-line elimination problem. Typically, 2 solution to the
hidden-surface elimination problem is given by G, augmented so that each polygonal face
of G stores the name of the rectangle of S that is visible in that face. Our ‘expositioh
will gain in simplicity if our output specification, which we denote by V'is(S), generalizes
this so that each face is itself a rectangle (our V'is{G) is obtained from G by adding to
it a small number of extra edges, 2s explained below).

We begin our definition of Vis(S) by examining the subdivision G a little more
closely. For each vertex v of G either v corresponds to & (visible) corner point of 2
rectangle in S or v corresponds to an intersection of two visible edges (where one of
them becomes occluded by the other, i.e., an intersection of the form T, L, F, or ).
We call such intersections dead ends, and classify them into two types: vertical dead
ends, where the terminating segment is vertical (i.e., T or L), and horizontal dead ends,
where the terminating segment is horizontal (i.e.,  or ). In .Figure 1b, points ¢ and
f are corners, cisa T,bisa L, cisal, and dis a <. In that same figure, points
a,b,c and d are dead ends: ¢ and b are vertical dead ends, while ¢ and d are horizontal
dead ends. For each corner point v in G, extend 2 horizontal ray from v in the direction
that points away from the rectangle to which v belongs. Thus, in Figure 1b, the ray
emanating from e goes leftward, whereas that from f goes rightward. The point on the
first (vertical) edge of G that is intersected by this ray is known as the horizontal shadow
of v (if no such intersection with the ray occurs, i.e., the ray continues to infinity, then we
consider the point at infinity- tb be the horizontal shadow of v). Call the new subdivisi;m
created from G by drawing an edge from each corner point to its horizontal shadow the
rectangﬁlar decomposition of G, and let &' Zenote this subdivision. Obviously each face
of G' is rectangular rather than polygonal. Fizure 3 shows the G' that results from the
G of Figure 1b. In that figure, the horizontal shadow of e is g, that of f is at (+oc, y(/))-
Our characterization, Vis(S), of a solution to the hidden-surface elimination problem
for S consists of the subdivision G’ augmented so that each rectangular face of G' stores

the name of the rectangle of S that is visible in that face.



Figure 3: The subdivision G'. The edges joining corners to their shad-
ows are shown dotted.

By defining Vis(S) in this way we get a characterization that consists entirely of rect-
angular faces, yet is at most twice the size of G. For many applications, our specification
should lead to simpler rendering algorithms, e.g., by simplifying scan-line conversion.

For convenience, we assume throughout the paper that the planar graph V'is(S)
lies in the zy-plane, so that any rectangular face of V'is(S) is also in the zy-plane. Of
course, each such rectangular face knows which rectangle of § is visible in it, and the
z-coordinate of that rectangle (throughout the paper, each rectangular face of a V'is(S5)
is always assumed to };a_ve, attached to it, which rectangle of S is visible in it).

There are 2 number of ways one can represent an embedded planar graph, such as
Vis(S). Three such representations are the “winged edge” structure of Baumgart [2], the
“quad edge” structure of Guibas and Stolfi [11], and the “doubly-connected edge list”
structure of Muller and Preparata [14,17]. Our algorithm does not depend on which
representation one chooses, so long as the representation allows one to determine each

of the following in time proportional to its size:

1. all edges and faces adjacent to a given vertex v, as well as their orientation with

respect to v,

2. all vertices and faces adjacent to a given edge ¢, zs weil as their orientation with

respect to ¢, and

3. all vertices and edges that lie on the boundary of a given face f, in the order they

occur around f.



Each of the mentioned representations provides this.

Given an isothetic rectangle R in ®3 we let z( R) denote the z-coordinate of the plane
to which R belongs. Similarly, for any poiat p in R3, we use z(p), y(p), and z(p) to denote
the z-, y-, and z-coordinate of p, respectively. Our terminology implicitly assumes that
the observer looking at the scene from z = oo has his body parallel to the y-axis, with
both arms extended so they are parallel to the z-axis (the reader probably inferred this
from the way we drew Figure lb) Hence a vertical segment is parallel to the y-axis,
whereas a horizontal segment is parallel to the z-axis. Similarly, we say that a plane is
vertical (resp., horizontal) if it is parallel to the yz-plane (resp., zz-plane). In addition,
we assume that the z-, y-, and z-coordinates of all rectangle endpoints are integers in
the range [1,2n]. If this is not the case, then we apply a pre-processing step that, in
turn for each of the three coordinates, sorts its values in increasing order and replaces
each old value by its rank in the sorted list. This takes O(nlogn) time [1]. For the sake
of simplicity, we assume that the z-coordinates of the rectangles’ endpoints are distinct,
and similarly for y-coordinates and for z-coordinates. Modifying our ilgorif.hrn for the
general case is straightforward, and is left to the interested reader.

The algorithm we outline below constructs V'is(S).

The Hidden Surface Elimination Algorithm (High-Level Description):

Step 1. Problem division. In this step we divide the endpoints of the .gectangles
of S by vertical planes into r groups, each of size [4n/r] (with the possible exception of
the last group, which may be smaller). Note that this also divides ®* into r regions, each
delimited by two vertical planes (except for the first and last such regions, which are
delimited by only one such plane). We call these regions slabs, and let (1), I3, ..., II,)
denote the collection of slabs listed from left to right. For each I1; we construct Endpoint;
" and Span;, where Endpoint; denotes the set of all rectangles that have at least one
endpoint in [1;, and Span; denotes the set of ali rectangles that span I1; (i.e., all rectangies
that intersect IT; but do not have an endpoint in it). (See Figure 4.) Let S; be obtained
from Span; by replacing every rectangle R in Span; by I N I1;. Similarly, let Z; be
obtained irom Endpoint; by replacing every rectangle & :2 Z=ndpoint; by RNTII;. This .
step can easily be performed in O(rn) time.

_Step 2. Computing Vis(E;). In this step we solve the hidden-surface elimination
problem for each E;, ignoring all rectangles not in E;. This can be done in O((n/r)?)

time for each E; using the algorithm by McKenna [13]. In addition, for each E; we
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Figure 4: R is in Endpoint;, Spans, Spens, and Endpointy.

perform some preprocessing to help us perform the space-sweepiﬁg method of Step 3
(given below). The total time complexity of this step is O(rn + n®/r), and its details
can be found in Section 2.

Step 3. Determining visible corners and vertical dead ends. In this step we
determine all corners and vertical dead ends that belong to Vis(S), and for each such
point we determine the rectangles of S that are visible in its vicinity (i.e., that are visible
_in the faces of Vis(S) adjacent to it). In addition, for each corner point p we find the.
borizontal shadow of p in Vis(S; U E;), where p € II; and its horizontal shadow is now |
constrained to be in II; (so that the horizontal rays by which we defined shadows are
stopped by the boundary of II;, instead of being allowed to proceed to infinity). We call
this the restricted horizontal shadow of p. The main idea of our method for peri’orrriing
this step is to perform a space-sweeping procedure that simultaneously sweeps through
all the slabs IIy,...,II, to determine all the visible corners and vertical dead ends. This
step requires O(nlog® n+ rn + n?/r + k') time, where k' is the total number of (visible)
points discovered in the sweep (note that k' < k). Its details are given in Section 4.

Step 4. Determining visible horizontal dead ends. In this step we repeat
Steps 1-3, except that the roles of the z-axis and y-axis are inter==zzged, that is, we
divide by horizontal planes and sweep horizontally. We do not perizsm the extra work,
as done in Step 3, to find visible corners and their shadows, however. That is, this step
simply discovers all visible horizontal dead ends, and, for each one, all the the rectangles

of S that are visible in its vicinity (i.e., that are visible in the faces of Vis(S) adjacent

to it).



Step 5. Constructing Vis(.é'). In this step we combine the information computed
in Steps 3 and 4 to construct a representation of Vis(S). Since we have already computed
all the visible vertices in Vis(S), we begin by constructing the subdivision G that they
determine. We do this using two calls to a bucket sorting routine [1], which takes
O(n + k) time. To complete the construction of Vis(S), we mus: augment G with the
true horizontal shadows of all visible corner points. (Recall tzz: Step 3 only yields the
restricted horizontal shadow of each corner point p, that is, the horizontal shadow of p
restricted to the slab to which p belongs.) The main idea of our method for doing this
involves the construction of left and right “horizontal exposure” lists for each IT;, and the
application of the fractional cascading technique (5] to these lists. This gives us 2 data
structure that enables us to find each horizontal shadow in O(logn + r) time, and then
finish constructing V¢s(S) in & further O(n) time. Performing the entire step requires
O(nlogn + rn <+ k) time. The details are in Section 5.

End of High-Level Description. )

Assuming that we can perform each of the above steps correctly in the stated time
bounds, this method gives us an algorithm that runs in O(nlog? n+rn+n®/r+k) time,
where k is the size of the output. Setting r = \/n gives us the time bound of O(n!-® + k)
that we claimed in the introduction. '

Let us now give the details for each of the above steps. The details of Step 1 should

be obvious given the above description, so we begin our discussion with Step 2.

3 Step 2: Computing Vis(E;), and preparing for Step 3

Recall that in Step 2 we wish to solve the hidden-surface elimination problem for each
E; in O((n/r)?) time. Since each E; contains O(n/r) rectangles, this amounts to being
able to perform hidden-surface elimination in time that is quadratic in the number of
rectangles. As mentioned above, we can do this by calling the algorithm of McKenna [13]
as a subroutine. This section, however, does more than just call M:enna’s algorithm:
it computes information that will be crucial to the efficient impismmen:ztion of Step 3
For that purpose, we need to btieﬁy review McKenna's method 2nd somewhat modify
its output.

When applied to a set S of isothetic rectangles, McKenna's method constructs the

arrangement in the zy-plane produced by (i) extending each rectangular edge to mﬁmty




Figure 5: The arrangement resulting from Figure 1.

in each direction, (ii) projecting the lines so obtained on the zy-plane, and (iii) deter-
mining the rectangle of S visible in each rectangular face of the arrangement produced
by these projected lines. Figure 5 shows the arrangement resulting from the situation
depicted in Figure 1 (in boldface are the edges of the arrangement that are projections

of edges of rectangles in S).

Suppose we have already applied McKenna'’s method to E;, producing W (E;). First
we use the boundary of II; to “clip” all the infinite horizontal edges of W(E;) (i.e., they
now stop at this boundary instead of proceeding to infinity). Then we delete from W (E;)
al] the segments that are not in Vis(E;), i.e., we eliminate each edge ¢ that has the same
rectangle of E; visible on both sides of ¢, unless ¢ joins a corner to the (restricted)
horizontal shadow of that corner (recall that segments that extend from corner points to
their respective horizontal shadows are part of Vis(E;)). This is easily done by checking
whether both of the two faces of W{E;) that are adjacent to ¢ have the same rectangle
of E; visible in both of them, and whether ¢ joins a corner to its (restricted) horizontal
shadow. .

We now do some preprocessing that will help us efficiently implement Step 3. In
Step 3 we will be performing 2 space-sweeping procedure in which we :weep a horizontal
plane ) in the negative y-direction. At certain eveals during thiz sweep we will need to
update some dynamic data structures associated with the slab Ii;. The preprocessing
we do now facilitates our being able to perform these update operations efficiently. Ba-
sically, we take advantage of the fact that the set of operations we will be performing on

these dynamic data structures are known in advance, i.e., it is a balched problem. In gen-
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eral, this paradigm of taking advantage of t;he batched nature of the dynamic problems
that arise in geometric problems such as ours is known as batched dynamic searching.
Applications of this paradigm to other geometric problems are given by Edelsbrunner
and Overmars 8], for example.

The details of our preprocessing steps are as follows. Suppose we wish to sweep
a horizontal plane X througs V'is(E;) in the negative y-direction (as will happen for
real in Section 4). Such a piane would encounter ¢t = O(n/r) horizontal positions, each
of which coincides with (possibly many) horizontal edges of Vis(Z;). Each horizontal
position determines a horizontal plane, which corresponds to a “snap shot” of the plane
) at the time it would encounter that position. The collection of all such horizontal
planes divides II; into t + 1 regions, which we call strips. Number these strips, from
top to bottom, 1, 2, 3, and so on. Thus, the strips form a horizontal partitioning of II;.
Now, for each rectangular face f of Vis(E;) that intersects (say) the ¢; strips numbered
to,to + 1,...,20 + t; — 1, create t; copies of f, each copy being associated with one of
those t; strips. The copy of f associated with strip s gets assigned as 1ts key the pair

(s, z) where z is the z-component of the rectangle of E; that is visibie in rectangular

face f. (Thus 2ll the copies of f have keys with the same second component.) Observe

that the sum over all f € Vis(E;) of the number of (s,z) pairs associated with f is
O((n/r)?), because each strip can determine at most O(n/r) (s, z) pairs, and there are
O(n/r) strips. .

Let C;: denote the collection of (s, z) pairs, where each (s, z) pair contains a pointer
to the face f in Vis(E;) associated with that pair. Now, bucket sort C; using the
lexicographical ordering determined by the (s, z) keys for comparisons. This takes O(n+
(n/7)?) time. For each strip s let Z;, denote the part of this sorted list that has s as its
key’s first coordinate. For each s compare the list Z;, with the list Z;,.,, constructing
three sorted lists, S ame,-,,,. Dez; eie; ,, and Insert; .., éeﬁned as follows. The list Same;,
consists of all the rectangular faces f that have a copy in both Z; , and Z;,4; (the key of
[ in Same; , is inherited from the copy in Z;, rather than from thatin Z; ,41). The list
Delete; , consists of all the rectangular faces f that have a copy :2 Z..; but not in Z; 44
(the key of f in Delete;, is the same as its key in Z;,). The list fnsert; ,4; consists of
all the rectangular faces f that have a copy in Z;,+1 but not in Z;, (the key of [ in
I:wert,-,,.,,l is the same as its key in Z; ,41). '

Note that the keys of the elements of Same;, all have the same first component

11
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(namely, s), so that the contents of Same; , are in fact sorted by the second components
of their respective keys (that is, by the z-coordinates of the respective rectangles of E;
that are visible in them). Therefore, from now on, we shall ignore the first components
of the keys of the elements of Same;,. That is, a key is from now on 2 z-value rather
than 2 pair (s, ). Similar remarks hold for each Delete;,, and also for each Insert;,.

For each rectangular face f in Insert; ,.1, we determine its predecessor in Same;,
and store this in a field Pred; ,.1(f) associated with f.

Once this is completed, we no longer need the Same;, lists. The Delete;, and
Insert;, lists, on the other hand, will become very helpful in performing the space-
sweeping procedure in Step 3. Specifically, we shall use them to maintain a list (the
current list) of rectangular faces of Vis(E;) that are intersected by 2 horizontal plane A
(the plane we use for sweeping in the negative y direction). That is, to move some such
plane A from the strip s to the strip s + 1 we need only consult the lists Del ete; , and
Insert; ,+1 to tell us which rectangular faces to respectively delete and insert from the
current list. In addition, by storing, in the field Pred; 4+1(f), the predecessor in Same;,
of each rectangular face f € Insert; .1, we enable ourselves to perform the insertion of
f into the current list in O(1) time. Section 4 contains the details of how all these things
are done.

The computation of Vis(E;) and of the Delete;, lists and Insert;, lists (and their
associated Pred;, fields) takes O((n/r)?) time for each E;, and hence the total time
complexity of Step 2 is O(r(n/r)?) = O(n?/r).

We next show how to combine the information of the previous two steps to implement

Step 3.

4 Step 3: Computing visible corners and visible vertical

dead ends

In this step, we use the information computed in the previous step to 2iz nthe implemen-
tation of a space-sweeping procedure that computes (i) all the coczaess 2ad vertical dead
ends in all the Viis{S;UE;)’s, (i) for each such point, the rectangular faces of Vis(S;UE;)
that are adjacent to it, and (iii) for each such rectangular face, the rectanglé of B;US;
(and hence of S) that is visible in it.

We implement this step by sweeping space in the negative y-direction with a hori-

12
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zontal plane A. We will be using a number of data structures to implement this space

sweep:

1. For each II; we maintain a variable CurV'is; that stores the name of the rectan-
cle of Span; having highest z-coordinate among all elements of Span; currently

intersected by \. Note: we never maintain 2ll of Vis(S;), just CurV'ss;.

L

For each II; we maintain a list D; that stores all the rectangular faces of Vis(E;)
that are currently intersected by A, sorted by non-increasing z-coordinates of the
rectangles of E; visible in them (that is, by associating with each face the :z-
coordinate of the rectangie of E; that is visible in it). Each D; is represented using
a doubly linked list and has an entry-pointer (or “finger”) f; that points to the
last face in D; whose associated z-value is greater than =(CurV'is;). If there is no
such face in' D;, then f; points to the first element in D;. We also maintain for
" each II; an array of pointers called Where;, such that for every rectangular face
f € Vis(E:), Where;(f) points to the location of f in D; if f € D;, and is nil

otherwise.

3. We maintain a tree T that contains the set S of rectangies in Ul_, Span; that are "
currently intersected by A. (Note that Sy contains no more than n elements, since
it is a subset of 'S.) The tree T is represented by a priority segment tree [3,12],
where the leaves of T are associated with the slabs IT;, I3, ..., II,, listed from left
to right. For each internal node v of T we associate 2 slab TI(v) that is the union
of the slabs associated with the descendents of v in T. Let the i-th leafl be v;,
so that I1(v;) = IL;. In addition, for each node v we store a list Cover(v) that
stores all the rectangles of S, that span II(v) but do not span Il(parent(v)), sorted
by decreasing z-coordinates. Each list Cover{v) is represented by a dynamic tree
structure (e.g., 2 (2,3)-tree [1] or 2 red-black tree [10,23]) augmented with a pointer
to the rectangle in Cover({v) with largest z-coordinate (we call it Mca={v}}. Every
node v also stores Best(v), which is the rectangle that has maximum :-::ordinate
in the set of Maz(w)’s stored in the nodes on the path from v to the rsor of T. It
is not hard to see that a rectangle R can appear in no more than 2logr different

- Cover(v)’s, so that the space complexity of T is O(r*+ |Sx]logr) = O(r + nlogr).

The following lemma follows immediately from the above definitions.

13 ORIGINAL PAGE IS
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Lemma 4.1: Assuming the above data structures are correctly maintained for the cur-
rent position of A, then, for any I1;, CurVis; is equal to Best(v;) where v; is the leal

that corresponds to II; in T.

Proof: An immediate consequence of the definitions. ®

Let Y be the list of the 2n horizontal edges of the rectangles in S, sorted in decreasing
order of their y-coordinates. For each edge in Y we store the name of the rectangle that
determined that edge. The list Y determines the cvents in the space sweep. The goal
of the sweep procedure is to discover all visible corner points and visible vertical dead
ends. Initially, CurVis; is set to the “background” rectangle —oc, all the D; lists are
empty, and all the Cover(v) lists in T are empty.

To implement the space sweep we iteratively examine each edge in Y. Suppose [ is
the next event in Y. Let R be the rectangle of S to which ! belongs. Let a (resp., b) be
the left (resp., right) endpoint of I. There are essentially two different kinds of updates
we must perform for I: updating the slabs containing a 2nd b (Subsection 4.1 below),
and updating the slabs spanned By 1 (Subsection 4.2 below). But beiore doing any; of
these, we begin by updating the tree T so that it already reflects the occurrence of event
I. This is done as follows. '

If | is the ﬁpper edge of R then, just after event I/, the sweeping plane A inter-
sects R (whereas it did not before event [) and therefore we must insert R in all the
Cover(v)’s to which it belongs and update their respective Mc=z(v)’s accordingly. As
already stated, there are at most 2logr such nodes v € T whose respective Cover(v)'s
are to be updated. Since each such update takes O(logn) time, the amount of time
for all such updates is O(logrlogn) = O(log®n). On the other hand, if ! is the lower
edge of R then, just after event !, the sweeping plane A po longer intersects R (whereas
it did before. event 1) and therefore we must delete R from all the C}Jver(v)'s to which
it belongs and update their respective Maz(v)’s accordingly. Of course, this too takes
O(log® n) time, by an argument similar to that for the case of insertions. Firallv. we
must update the Best(w) values in T, so that they refiect the new Maz(v) valves. This
is éasi]y done by a preorder traversal of T during which we maintain a stack 4 of 2li
the Best(v) values from the current node to the root. That is, if the traversal is at node
wt, and if the path from w; to the root of T is w;, ws,..., w, then the stack A contains
Best(w;), Best(ws), ..., Best(w) (with Best(w;) at the top of the stack). It is trivial to

maintain the stack A during the traversal of T, as follows. When we traverse down T to
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a new node v, we compare z(A[top]) to z{Maz(r)) and push the rectangle achieving the
larger of these two onto Altop]. When we traverse up T we pop the top element off A.
The traversal for updating the Best(v)'s t.a.kes'Q(r) time, since T has O(r) nodes. Thus
the time for updating T as a result of event [ is O(log* n +r).

Now that T is updated, we can proceed to compute the effect of event ! on the various

H.- 's.

4.1 Processing the “endpoint” slabs

We first describe the updating of Dy where a € Iln. (The updating of D;, where b £ II;,
is similar.) Since a is in IT) there were two adjacent strips (say, strips s and s+1) in Step 2
whose common boundary is the horizontal plane L containing l. In moving A from s to
s+ 1 past this horizontal plane L, we must delete the rectangular faces of Vis(E;) that
will no longer be intersected by A and insert the new rectangular faces that will become
intersected by A. Determining these rectangular faces is easy, given the preprocessing
done in the previous step (Step 2). Suppose we are in strip s and crossing into strip s+1
at L. To determine which faces to delete from D) we need only consult the list Delete; ,:
for each f in it, we follow the W here, (f) pointer which tells us where f occurs in Dj and
thus enables us to delete f from D, in O(1) time. To determine which rectangular faces
to insert in Dj, we consult the list Inserty ,41: for each f in that list, the Preds ,-1(f)
pointer tells us which rectangular face f’ immediately precedes the location in Dy where
[ is to be inserted, and following W here,(f') enables us to complete the insertion of f in
Dy, in O(1) time. Of course after deleting f from D) we must update the Where, array by
doing Where,(f) :=nil. Similarly, after inserting / in D, we must change Wherex(/)
from being nil to pointing to where f is in D,. Updating Dj therefore clearly takes
O(|Deletey ,| + |Inserty ,41]), which is O(|Ex]) = O(n/r) because A coincides with at
most O(|E,|) edges of Vis(E,).

In addition, for each rectangular face f in Deleten, U Inserty 41 we perform the
following computa*.ions for discovering corners and vertical dead ends on f in Vis(E,}
that are also in Vis(E; U S;). Let e be the projection of [ onto f (in the projecticn
plane); recall that since [ € Deletey , U Inserty 441, ¢ must contain one of the horizontal
boundaries of f. For each endpoint p of ¢, we check if p is in Vis(E; U S;), by comparing
z(CurVis;) to the z-coordinate of the rectangle of E; that is visible in f: if z(CurV’ is;) is

the larger of the two then pis not in Vis(E;US;), otherwise it is. If pisin Vis(E;USi)—
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i.e., p is visible—then we must find out, for each rectangular face f' adjacent to p in
Vis(E;), which rectangle of £; U S; is visible in f'. This is easily done l;y comparing the
rectangle CurVss; to the rectangle of E; that was visible in J' (the one with the higher
s-coordinate wins).

In addition, if p is a corner point, then we must determine its restricted horizontal
shadow. To do this, we start walking from p along the horizontal ray leading to p's
shadow in V'is(E;): we walk through all the rectangular faces of Vis(E;) that are cut
by this horizontal ray until either (i) we first hit a face whose z-coordinate is more than
z(CurV'is;), or (ii) we reach the boundary of II;. Either of events (i) or (ii) gives us the
horizontal shadow of p in Vis(S; U E;), i.e., the restricted horizontal shadow of p.

~ The 2bove computations for processing the event ! for slab 1) require a total, over
all f in Deletey, U Inserty 441, of O(|Ei|) = O(n/r) time (this is because even though
Vis(E;) has O((n/r)?) faces, the number of faces cut by any particular position of the
sweeping plane A is O(|E;[)).

4.2 Processing the “spanned” slabs

Assume that the processing of the “endpoint” slabs Il and II; has already been done,
as explained in Subsection 4.1. This section deals with processing the "s'panned” slabs,
i.e., the II;’s for which R € Span;. (Recall that R is the rectangle of S to which event |
belongs.)

Let U denote the set of I'L-’s' that are affected by event [ and tﬁus will need further
processing. Thus U consists of the II;’s whose respective CurV'is;’s will change as a
result of event ! (either CurV'is; was R and will cease to be R, or it was not R and
will become R). Finding U is e2sy to do: Lemma 4.1 implies that the new value of each
CurVis;—call it NewCurV is;—just after event ! is readily available in the tree T (recall
that T has already been updated to reflect event (). Therefore we can easily compute U
as follows. For each II;, compare CurVis; to NewCurVis;, i.e., to the Best(v;) entry
avaiiable in T: if they are not the same rectangle then include IT; in U.

For each [I; € U, we perform the following computation. For convenience, in what
follows we let R; stand for C_urV:‘s.-, and we let Ry stand for NewCurVis;. Thus R;
is the rectangle that is in CurVis; just before event [, and Rz is the rectangle that
becomes in CurVis; just after event | (R # Rz by definition of U). Note that R will
be one of R; or R, (Figure 6 depicts the case R, = R). We obtain from D; the set D;
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Figure 6: Illustrating the case z(R;) > =(Rs).

of rectangular faces of V'is(E;) whose associated z-values fall between z(R;) and z(R,).
If z(Ry) > z(R;) (s in Figure 6), then the rectangular faces in D' are not visible (in
E; U S;) before I, but become visible after I. Otherwise, if 2(R;) < z(R;), then the
rectangular faces in D' are visible before [, but are not visible after {. In either case, (a
portion of) each of these rectangular faces is part of the output, Vis(Z; U S;). For each
such rectangular face f, we determine the intersection of f with X, the sweep plane (or,
equivalently, the projection of  onto f). Let p € f be an endpoint of this intersection,
and let ¢ be the vertical line segment of Vis(E;) that contains p. For each such point p,
we find the rectangles of E; U S; that are visible in the vicinity of p by comparing the
two z-values (in Vis(E;)) of the two rectangular faces adjacent to e, to z(R;) and z(R;).
Note that p forms a visible vertical dead end in Vis(E; US;) (and hence in Vis(S)). We
complete the computations for II; by assigning CurVis; := R;. The pro;:essing of each
such II; € U clearly requires O(k’) time, where k' = [D’| (recall that a portion of each
face in D' is visible in E; U S;, hence is part of the output).

4.3 Analyzing Step 3

When the slab-sweeping procedure terminates we will have computed all the corner
points, restricted horizontal shadows, and vertical dead ends in V'i¢(S; U E;). (We prove
this in the next lemma.) From the comments made during the detailed presentation of ‘
Step 3, it is easy to see that performing this entire step requires O(n log® n+nr+n/r+k)
time, where k is the size of Vis(S). In the following lemma we establish the correctness

of our method so far.
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Lemma 4.2: The previous steps correctly find all corner points and vertical dead ends
in every Vis(S; U E;) and, for each such point p, correctly determine the rectangles of
E; U S; that are visible its vicinity (i.e., in each rectangular face of V'is(E; U 5;) that is

adjacent to p).

_Proof: (=:) Suppose p is a corner point or vertical dead end :ir VisiS; U E;), where
I1; is the slab containing p. We wish to show that p will be discovered in the previous
steps of the algorithm. Let us treat each of the possible cases.

Case 1. p is a corner point, the projection of a vertex p' of some R € S. Let ¢
be the horizontal edge of R containing p'. Since p is a vertex in Vis(E; U 5;), p must
be a vertex in Vis(E;). Therefore, Step 2 will have computed which rectangle of S is
visible in each face that is adjacent to p in Vis(E;). Thereiore when event ¢ is processed
by Step 3, that step must indeed discover that p is visible in Vis(E; U S;) (this follows
from the way Step 3 works). Moreover, for each face [ of Vis(E;) that is adjacent to
P, Step 2 correctly determines the rectangle of S visible in f when it compares CurVis;
to the rectangle of Endpoint; that is visible in f and chooses the one with the larger
z-coordinate.

Case 2. p is a visible vertical dead end in Vis(E; U S;), i.e., it is of the form T or
L. If p is a vertex in Vis(E;), then an argument similar to that for Case 1 applies. So
suppose p is not a vertex in Vis(E;), i.e., it occurs on the interior of an edge ¢ of Vis(E;).
" Obviously e must be vertical so that a portion of it becomes the vertical part of the T
‘or L1 in Vis(E; U S;), the horizontal part of the T or . being contributed by the edge
of a rectangle in Span;. We continue the discussion assuming that p is, in Vis(E; U S;),
of the form L (the argument for when p is of the form T is similar). As already stated,

the L that p forms is the intersection of a portion of the (vertical) segment e with a
horizontal line segment ! that is the projection of an edge I’ of a rectangle, call it Ry,
that spans II;. (Note that Ry;; becomes the new CurV'is; just after event ! is processed.)
Let /' and f" be the two rectangular faces of Vis(E;) that are adjacent to ¢ just above
p (i-e., just before event I'). Let R’ and R" be the two rectangles of I; that are visible
in Vis(E;) in (respectively) faces f' and f". Then R' and R" must both have lower
z-coordinates than that of Ryig (because p is a L in Vis(E; U S;)). Moreover, at least
ome of R' and R" (possibly both) must be visible around p in Vis(E; U §;), i.e., have
a z-coordinate larger than that of the CurV'ts; just before event I' {otherwise p could

not be a ). Therefore the search performed by Siep 3 for event !' will discover at least
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one of f' and f"; hence, discover the intersection of e with ! at p and all the rectangles
visible in the faces around p.

(«==:) Let p be any point determined to be “visible” by Step 3. We wish to show
that this action of Step 3 is correct, i.e., that p is indeed visible in Vis(S; U E;), where
TL; is the slab containing p. Obviously p must be in Vis(E;) as well, but not nezessasiix
as 2 vertex (perhaps as a point along some edge). Any rectangle R that can possitiv
obstruct p is either in E; or in Span;. Thus, since we compare p to the rectangles ia
E;in Step 2, and, in Step 3, to the rectangle with largest z-coordinate whose projection
contains p, p is indeed a visible point. Moreover, since p must correspond to an event in
one of the plane sweeps of Steps 2 and 3, by arguments similar to those for the (=) part
of the proof, we do discover all the rectangles of S that are visible in the faces adjacent
to p. This completes the proof. & )

In Step 4 we repeat the above three steps, except that the roles of the z-axis and
y-axis are reversed, and we do not bother performing the extra steps to determine corner
points and their respective shadows (this was already done in Step 3). Thus, we find
all the visible borizontal dead ends. This gives us all the visible vertices of Vis(S),
except those that are horizontal shadows. In the next section we show how to extend
the restricted horizontal shadows (in Vis(S; U E;)’s) into true horizontal shadows (in
Vis(S)), thus giving us all the vertices of Vis(S).

5 Step 5: Constructing Vis(S)

In this step we complete the construction of V'is(S). From Steps 3 and 4 we have all
the visible vertices of V'is(S), except those that are horizontal shadows. Moreover, for
each visible vertex p we have the rectangles of S that are visible in each face adjacent to
p. In order to complete the coi’xstmczic_m of Vis(S) we must determine all the horizontal
shadows in V'is(S), as well as all the adjacency relationships between vertices and edges
in Vis(S).

Let B be the set of all visible horizontal dead ends, visible vertical dead ends, visibie
corner points, and the restricted horizontal shadows of visible corner points. We begin
by constructing G, the planar graph determined by the adjacencies of the vertices in

B. We construct all the adjacencies between these vertices by performing two calls to a

2-dimensional bucket sorting routine, each time giving B as the set to be sorted. In the
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first call we specify that the routine should sort lexicographically by (z,y) coordinates,
resulting in the list B.,. In the second call we specify that the routine sort lexicograph-
ically by (y, =) coordinates, giving the list B,.. This requires O(n + k) time, where k is
the number oi vertices in Viis(E). For any vertex p in B we determine the other vertices
of B that are a2 acent to pin G by examining the immediate predecessors and successors
of pin Bzy ans Sy:. In addition, recal] that we have for each p the rectangles that are
visible in each cf the faces of G adjacent to p.

Having so constructed G, we nesd only extend each restricted horizontal shadow in
G to 2 true horizontal shadow. Let us re-divide the space by the vertical dividing planes
used in Step 1, again giving us the slabs Iy, IIa, ..., II,. From the first part of this
Step 5 (explained above) we now have all the vertices in Vis(S; U E;) as well as all their
adjacencies in Vis(S). We say that a vertical segment s in Vis(S; U E;) is horizontally
exposed from the left (resp., right) if there is a horizontal line that intersects no vertical
segments in Vis(S; U E;) between s and the left (resp., right) boundary of II;. For each
slab II; we define the left projile (resp., right profile) to be the y-sorted list of vertical
segments of Vis(S; U E;) that are horizontally exposed from the left (resp., right). Let
L; and R; denote the left and right profiles of II;, respectively.

The method for constructing L; is as follows (the method for R; is similar). Let L
be the set of all vertices p in Vis(S; U E;) such that p is adjacent to a horizontal (visible
or shadow) segment in V'is(S; U E;) that intersects the left boundary of TI;. We can
construct L; by examining all the vertices in Vis(S; U E;) once. Sort the points in L; by
decreasing y-coordinates. Each point p in L; determines a segment in L;, namely, the
vertical segment that is adjacent to p. In addition, for each point p we traverse the face
of Vis(S; U E;) that is adjacent to p, but does not contain the vertical segment adjacent
to p, to see il it contains a vertical segment horizontally exposed from the left. Note
that by the definition of the i:oints in L; we will traverse each such face only once. After
we have completed all such traversals, we will have the entire list L;. This construction |
takes O(n <+ k;) time, where k; is the number of vertices in Vis(S; U E;).

We construct a graph that has a node for each L; and R; list, and connec:s each R;
to R;_, and and each L; to L,;;. Using the terminology of Chazelle and Guibas {5}, this
graph is a catalogue graph. Thus, we can apply the “fractional cascading™ technique [5] to
l;uild a data structure that consists of augmented lists L} and R, for each i in {1,2, ...,7},

as well as a2 number of pointers between consecutive augmented lists, such that given the



position of a point p in some L; list this structure allows one to locate pin L; and L,
in O(1) time. The similar property holds for the R; lists. Using the method of Chazelle
and Guibas [5], this data structure can be constructed in time and space proportional
to the total number of elements in al! the lists (which is O(n + k)).

Let us return to the problem at harz. nzmely, completing the construction of Vi¢(S)
by finding the true horizontal shadow rcints of each corner point p that currently has
its restricted horizontal shadow falling on a boundary of Il;, where p € I1;. Let us con-
centrate on the computation of the true horizontal shadow of a point p whose restricted
horizontal shadow falls on the left boundary of II; (the method for the case when p’s
restricted shadow falls on the right boundary of II; is similar). We first locate y(p) in
R{_, in O(logn) time by using the binary search technique. Then, we can locate y(p) in
R:_1 in O(1) time. If the interval in R;_; in which y(p) falls contains a vertical segment,
then we have found the true horizontal shadow of p—simply compute the intersection
of the line y = y(p) with this segment. If, on the other hand, this interval is empty of
any vertical segments (of Vis(S;-; U E;-;)), then we use the position of y(p) in R;_,
to locate y(p) in R_, in O(1) time. We then repeat the above procedure until we Jo-
cate p's horizontal shadow or run out of lists to search in (in which case p’s shadow is
(<=co, y(p))). This searching procedure takes at most O(logn + r) time.ior each corner
point p.

The only thing left, then, is to link each new horizontal shadow into the graph G to
give us Vis(S) while removing all the old (restricted) horizontal shadows they replace.

To perform this last computation construct a tuple (z,y, y(p)), where (z, y) is the upper
endpoint of the vertical segment on which the horiz.ontal shadow (z, y(p)) of p lies. We

can then sort all these, tuples in O(n) additional time. Using this sorted list we can
complete the construction of Vis(S) in O(n) time..Since there are at most O(n) corner
points for which we perform this procedure, the total time for finding these horizontal
shadows is O(nlogn + rn + k) time. This completes the algorithm. We summarize the

above discussion in the following theorem.

Theorem 5.1: Given a set S of n isothetic rectangles in ®3, one can solve the hidden-
surface elimination problem for S in O(nlog® n + (n®/r) + rn + k) time, where r is any

integer pa}ameter and k is the size of the output. ®

Corollary 5.2: One can solve the hidden-surface elimination problem for an isothetic



collection of rectangles in O(n!S + k) time.

Proof: Setr=.,/n. 8

6 Conclusion

In this paper we have given an algorithm for solving the hidden-surface elimination
problem for rectangles that runs in O(n!5 + k) time, which is output-sensitive and
simultaneously worst-case optimal (for quadratic k). Moreover, our algorithm should be
competitive with existing methods for realistic values of n. Of course, solving hidden-
surface elimination for rectangles is a special case of the general problem. Can the general

hidden-surface elimination problem be solved in time proportional to k + o(n®) ?
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